Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple searc...

متن کامل

Nature-Inspired Optimization Algorithms

The performance of any algorithm will largely depend on the setting of its algorithmdependent parameters. The optimal setting should allow the algorithm to achieve the best performance for solving a range of optimization problems. However, such parameter tuning is itself a tough optimization problem. In this chapter, we present a framework for self-tuning algorithms so that an algorithm to be t...

متن کامل

Clustering performance comparison using K-means and expectation maximization algorithms

Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K-means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, w...

متن کامل

Performance Enhancement of K-Means Clustering Algorithms for High Dimensional Data sets

Data mining has been defined as "The nontrivial extraction of implicit, previously unknown, and potentially useful information from data". Clustering is the automated search for group of related observations in a data set. The K-Means method is one of the most commonly used clustering techniques for a variety of applications. This paper proposes a method for making the K-Means algorithm more ef...

متن کامل

K+ Means : An Enhancement Over K-Means Clustering Algorithm

K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Scientific World Journal

سال: 2014

ISSN: 2356-6140,1537-744X

DOI: 10.1155/2014/564829